
Contents

2
3
4
6
7
8
9
10
11
13
14

Presentation

Sepam 100 LD

Sepam 100

- Sepam 100 is a group of modules that may be used:
- separately to perform a function
- in combination with a Sepam protection relay.
- Each module has been designed to perform a complete function.
- It includes all the elements required, such as:
- tripping output relays
- annunciation, settings
- connections.

Sepam 100 LD

Sepam 100 LD is a high impedance differential relay. It provides restricted earth fault, busbar and machine protection.

Advantages

- stability with respect to external faults
- sensitivity to internal faults
- speed (typical response time: 15 ms to 5 ls)
- outputs with or without latching
- Iocal and remote acknowledgment
- high level of immunity to electromagnetic interference.

Description

Sepam 100 LD is available in 4 versions:

- single-phase for restricted earth protection
- three-phase for busbar and machine protection
- 50 or 60 Hz
- 50 Hz single-phase: 100 LD X 51
- 50 Hz three-phase: 100 LD X 53
- 60 Hz single-phase: 100 LD X 61
- 60 Hz three-phase: 100 LD X 63.

The front of Sepam 100 LD includes:

- 2 signal lamps:
- □ power "on" indicator
- □ latching "trip" indicator indicating output relay tripping
- protection setting dial
- "reset" button for acknowledging output relays and the "trip" indicator.
- When the button is activated, the "trip" indicator undergoes a lamp test.

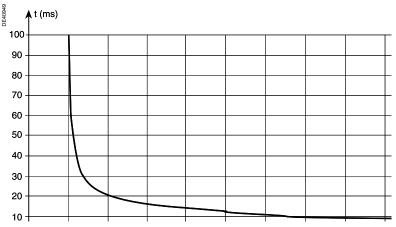
The back of Sepam 100 LD includes:

- input/output connectors:
- □ an 8-pin connector for toroid inputs and remote acknowledgment
- □ an 8-pin connector for "tripping" outputs and power supply
- □ a 4-pin connector for "tripping" outputs
- a microswitch used to configure the relay "with" or "without" latching.

Sepam 100 LD has:

- 1 or 3 current inputs with a common point according to whether it is a single-phase
- or three-phase version a logic input (isolated) for remote acknowledgment
- a logic input (isolated) for remote accide
 "tripping" output relay with 5 contacts
- 3 normally open contacts and 2 normally closed contacts).

Sepam 100 LD operates in 5 voltage ranges (please specify when ordering):


- 24-30 Vdc
- 48-125 Vdc
- 220-250 Vdc
- 100-127 Vac
- 220-240 Vac.

Sepam 100 LD is associated with a stabilization plate (or 3 plates) with variable resistance, enabling operation with 1 A or 5 A transformers.

Sepam 100 LD: front panel

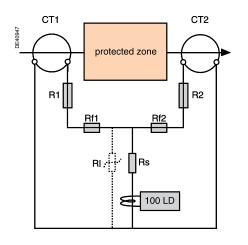
High impedance differential protection

Operation curve

Settings

Settings	Setting values		
Setting current Is	5 to 40 % In by steps of 5 % In		
	40 to 80 % In by steps of	of 10 % In	
	The dial on the front of	the device is used for setting	
Stabilizing resistor plate	Rs = 0 Ω to 68 Ω	P = 280 W	
	Rs = 0 Ω to 150 Ω	P = 280 W	
	Rs = 0 Ω to 270 Ω	P = 280 W	
	Rs = 0 Ω to 470 Ω	P = 180 W	
	Rs = 0 Ω to 680 Ω	P = 180 W	
Accuracy / perfor	mance		
Setting	±5 %		
Pickup (%)	93 % ±5 %		
Response time	≤ 10 ms for I ≥ 10 ls		
	≤ 16 ms for I ≥ 5 Is		
	≤ 25 ms for I ≥ 2 Is		
Memory time	≤ 30 ms		

Parameter setting


Microswitch SW1, accessible on the back of Sepam 100 LD, is used to choose "with" or "without" latching. Without latching:

With latching:

Specifying the sensors

n:	CT transformation ratio
р:	Number of CTs
Rf1, Rf2:	Wiring resistance on either side of Rs
	Rf = max (Rf1, Rf2)
R1,Rp:	CT secondary resistances
	R = max (R1,Rp)
Rs:	Stabilizing resistor
RI:	Surge limiter
isc:	Maximum external short-circuit
	current in CT secondary winding
is :	Protection setting (A)
if:	Current in RI
i _m 1, i _m p:	CT magnetizing currents
Vk1, Vkp:	CT knee-point voltages
	Vk = min (Vk1,Vkp)

Current transformers

To ensure the stability and sensitivity of Sepam 100 LD, the stabilization resistor and characteristics of the current transformers (CTs) are calculated as follows.

Choice of current transformers

- all the CTs must have the same transformation ration
- the knee-point voltages are chosen so that:
- Vk > 2 x (R + Rf) x isc

Choice of stabilizing resistor

$$\frac{R+Rf}{is} \times isc < Rs \le \frac{Vk}{2 \times is}$$

Surge limiter

The approximate voltage developed by a CT in the event of an internal fault is:

 $V = 2\sqrt{2} \times Vk \times (isc \times (R + Rf + Rs) - Vk)$

If the value exceeds 3 kV, it is necessary to add an RI surge limiter in parallel with the relay and stabilizing resistor in order to protect the CTs (see: surge limiter).

Protection sensitivity

The CTs consume magnetizing current and the surge limiter, when installed, creates fault current. The minimum residual primary current detected by the protection is therefore:

 $Id = n x (i_m 1 + ... i_m p + if + is)$

with

■ i_m1, ...i_mp are read on the CT magnetization curves at V = Rs x is

■ if is the total earth leakage current of the surge limiter for Vs = Rs x is, i.e. the sum of the earth leakage currents of the N limiter units installed in parallel: if = N x ib (see: surge limiter).

Example 1: Restricted earth (single-phase relay) Data:

- Isc primary = 8 kA
- n: 400/1 A
- R = 2,4 Ω
- CTs situated 60 m from the relays
- connected by 6 mm2 wiring (copper) $Rf = 0.020 \times \frac{(2 \times 60)}{2} = 0.4 \Omega$
 - 6
- number of sensors in parallel: 4 (same)
- setting: Is = 20 % In, is = 0.2 A.

CT knee-point voltage

isc = 8000/400 = 20 A (R + Rf) x isc = (2,4 + 0,4) x 20 = 56 VVk > 2 x 56 = 112 V e.g.: Vk = 140 V.

Stabilizing resistor

 $\frac{56}{0,2}$ < Rs $\leq \frac{140}{(2 \times 0,2)}$

280 < Rs ≤ 350

The resistance is adjustable from 0 to 470 Ω . It is set to 300 Ω .

Surge limiter ?

 $V = 2\sqrt{2} \times 140 (20 (2.4 + 0.4 + 300) - 140)$ V = 2574 V < 3 kVIt's not necessary to install a surge limiter in parallel.

Minimum primary default current detected by the protection

For V = Rs x is = 60 VThe CT magnetization curve indicates im = 10 mA Id = 400 (4 x 0.01 + 0.2) = 96 A

Specifying the sensors

Example 2: Busbar differential protection (threephase relay)

Data:

- switchboard with 10 cubicles incomer and feeder, without coupling
- Isc = 30 kA
- n: 2000/5 A
- R = 1.76 Ω
- CTs situated 15 m from the relays
- connected by 2.5 mm² wiring (copper):

Rf =
$$0.02 \times \frac{(2 \times 15)}{2.5} = 0.24 \Omega$$

number of sensors in parallel: 10 (same)

■ setting: is = 50 % In, is = 2.5 A.

CT knee-point voltage

isc = 30000 x 5/2000 = 75 A (R + Rf) x isc = (1.76 + 0.24) x 75 = 150 V Vk > 2 x 150 = 300 V e.g.: Vk = 320 V.

Stabilizing resistor

 $\frac{150}{2,5} < \text{Rs} \le \frac{320}{(2 \times 2,5)}$

60 Ω < Rs ≤ 64 Ω The resistance is adjustable from 0 to 68 Ω. It is set to 64 Ω.

Surge limiter?

 $V = 2\sqrt{2} \times 320$ (75 (1.76 + 0.24 + 64) - 320) V = 3443 V > 3 kV It's not necessary to install a surge limiter in parallel.

Minimum primary default current detected by the protection For V = Rs x is = 160 V

The CT magnetization curve indicates im = 20 mA. The leakage current curve of the surge limiter indicates $i_1 = 4$ mA. The number of surge limiters is:

$$N \ge \frac{75}{40} = 2$$
, hence

 $Id = \frac{2000}{5} (10 \times 0.02 + 0.004 + 2.5) = 1083 A$

Surge limiter

If the calculations have shown that it is necessary to install a surge limiter in parallel with the relay and Rs to protect the CTs, it is determined as follows..

Choice

Standard references

■ the surge limiters on offer consist of limiter blocks which are independent of each other. Each block accepts a maximum current of 40 A RMS for 1 s. By installing the blocks in parallel, it is possible to obtain the appropriate limiter for the application.

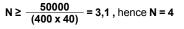
- there are two standard references:
- $\hfill\square$ a single module, comprising one block
- □ a triple module, comprising three independent blocks which are aligned.

Calculation of the number of blocks per phase

According to i, max. RMS short-circuit current in the secondary winding of a CT, the number of blocks required per phase is calculated: $N \ge \frac{I}{40}$

- for a three-phase relay, N triple modules should be ordered
- for a single-phase relay, N blocks, made up of triple and single modules.

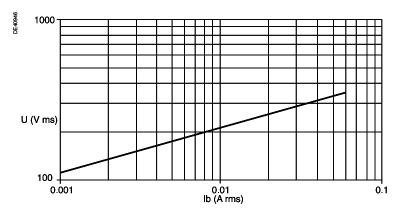
Example 1

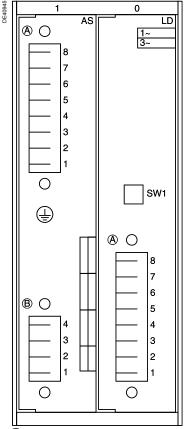

max. RMS short-circuit current in the primary winding of a CT

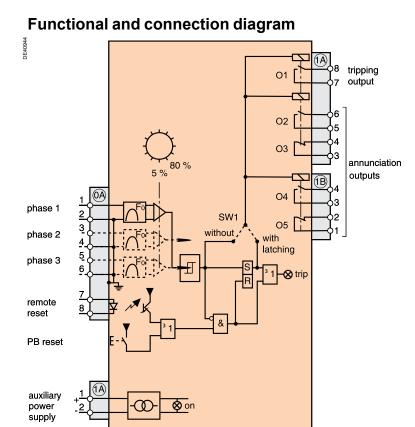
- with a ratio of 1000: 60 kA
- calculation of the number of blocks per phase:
- $N \ge \frac{60000}{(1000 \times 40)} = 1,5$, hence N = 2
- modules to be ordered:
- □ 2 triple modules for a three-phase relay
- □ 2 single modules for a single-phase relay.

Example 2

■ max. RMS short-circuit current in the primary winding of a CT


- with a ratio of 400: 50 kA
- single-phase relay.
- calculation of the number of blocks per phase:

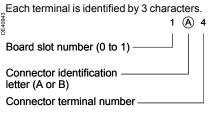

- modules to be ordered:
- 1 triple module + 1 single module to have 4 blocks in all.


Earth leakage current

A limiter block accepts a max. steady state voltage of 325 V RMS and presents an earth fault current lb:

Rear panel

(0A) : 8-pin CCA608 connector

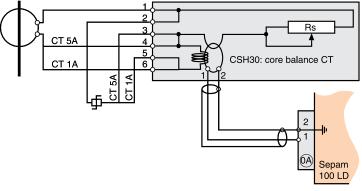

(forold and remote reloading inputs); screw terminal wiring with 0.6 to 2.5 mm2 wires, each terminal being capable of receiving two 1.5 mm2 wires.

(1A) : 8-pin CCA608 connector

(power supply and "annunciation and tripping" outputs); screw terminal wiring with 0.6 to 2.5 mm2 wires, each terminal being capable of receiving two 1.5 mm2 wires.

(B) : CCA604 connector ("annuciation" outputs); screw terminal wiring with 0.6 to 2.5 mm2 wires, each terminal being capable of receiving two 1.5 mm2 wires. Note: only 0A1 and 0A2 terminals are available in the single-phase version.

Terminal identification


: ground terminal

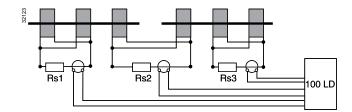
AC0458EN.indd

Connexion diagrams of the accessories

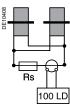
Stabilization plate

- Connection of CTs and surge limiters:
- 5 A rating: between terminals 1-2 and 3-4
- 1 A rating: between terminals 1-2 and 5-6

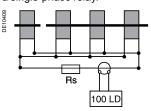
- items 1 to 6: clamp screw connections for 6 mm² wire
- items 1, 2: secondary of CSH30 core balance CT, connected to (0A)
- Wire to be used:
- sheathed, shielded wire
- min. cross-section 0.93 mm² (AWG 18) (max. 2.5 mm²)
- resistance load per unit length < 100 mΩ/m
- min. dielectric strength: 1000 V
- max. length: 2 m.

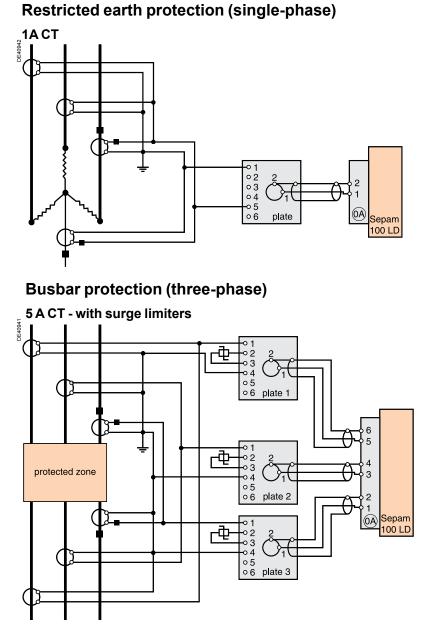

Connect the wire shielding in the shortest way possible to (0A) The shielding is grounded in Sepam 100 LD. Do not ground the wire by any other means.

Press the wire against the metal frame of the cubicle to improve immunity to radiated interference.


Surge limiter

single unit = outputs with screw M10
 triple unit = outputs with holes ø 10.4 (see, "installation").


Example 1 (N = 2 blocks per phase): 2 triple modules for a three-phase relay.



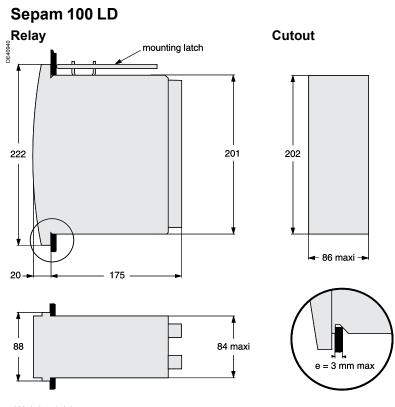
Example 2 (N = 2 blocks per phase): 2 single modules for a single-phase relay.

■ Example 3 (N = 4 blocks per phase) 1 triple module + 1 single module for a single-phase relay.

Note:
= correspondence between primary and secondary connections (e.g. P1, S1).

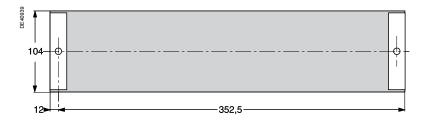
Characteristics

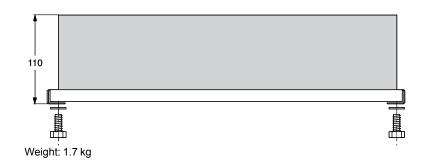
Electrical characteristics

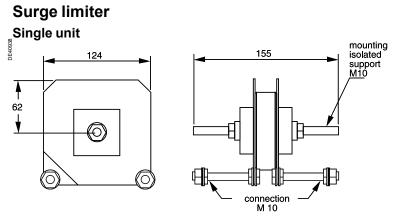

Analog inputs (with p	olate)				
Constant current		10 In			
3 sec. current		500 ln			
Logic input (remote r	eset)				
Voltage		24/250 Vdc	127/240 Vac		
Maximum power consumption		3.5 W	3.7 VA		
Logic outputs					
Constant current		8A			
Voltage		24/30 Vdc	48 Vdc	127 Vdc/Vac	220 Vdc/Vac
Breaking capacity (contact 01)	Resistive dc load	7 A	4 A	0.7 A	0.3 A
	Resistive dc load			8A	8A
	Resistive dc load	3.4 A	2 A	0.3 A	0.15 A
	Resistive dc load			4 A	4 A
Power supply					
	Range	Consumption wh	en inactive	Max. consumption	Inrush current
24/30 Vdc	±20 %	2.5 W		6 W	< 10 A for 10 ms
8/125 Vdc	±20 %	3 W		6 W	< 10 A for 10 ms
20/250 Vdc	-20 % +10%	4 W		8 W	< 10 A for 10 ms
00/127 Vac	-20 % + 10 %	6 VA		10 VA	< 15 A for 10 ms
220/240 Vac	-20 % + 10 %	12 VA		16 VA	< 15 A for 10 ms
Operating frequency		47.5 to 63 Hz			

Environmental characteristics

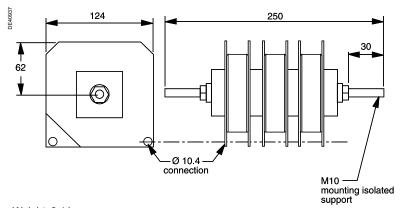
Climatic			
Operation	IEC 60068-2		-5 °C to 55 °C
Storage	IEC 60068-2		-25 °C to 70 °C
Damp heat	IEC 60068-2		95% to 40 °C
Influence of corrosion	IEC 60654-4	Class I	
Mechanical			
Degree of protection	IEC60529	IP41	On front
Vibration	IEC 60255-21-1	Class I	
Shocks and bumps	IEC 60255-21-2	Class I	
Earthquakes	IEC 60255-21-3	Class I	
Fire	IEC 60695-2-1		Glow wire
Electrical insulation			
Power frequency	IEC 60255-5		2 kV - 1 mn
1.2/50 µs impulse wave	IEC 60255-5		5 kV
Electromagnetic compatibility	y		
Immunity to radiation	IEC 60255-22-3	Class X	30 V/m
Electrostatic sicharges	IEC 60255-22-2	Class III	
Single-direction transients	IEC 61000-4-5		
Damped 1 MHz wave	IEC 60255-22-1	Class III	
5 ns fast transients	IEC 60255-22-4	Class IV	


Note: " $C \in$ " marking on our product guarantees their conformity to European directives.


Installation


Weight: 1.9 kg

Stabilization plate

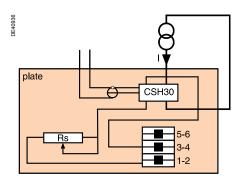


Installation

Weight: 1.2 kg max.

Triple unit

Commissioning


Plate

- \blacksquare before installing the plate, set the required resistance using the ohmmeter
- wire the current transformers to the terminals that correspond to their current
- rating, in parallel with surge limiters:
- $\hfill\square$ between 1-2 and 3-4 for 5 A
- □ between 1-2 and 5-6 for 1 A.

Relay

set microswitch SW1, located on the back, to "with" or "without" latching (see page 3)

■ adjust the front dial to the required setting.

Testing

Using a temporary connection (1 turn), inject a current 20 % above the setting (5 A rating) into the toroid primary and check that the relay trips.

Example: Is = 40 % In. I = 0.4 x 5 A x 1.2 = 2.4 A.

The test is carried out on each of the three plates if a three-phase relay is being used.

Sepam 100 LD

Order form

When ordering Sepam 100 LD, stabilization plate and/or surge limiters, please enclose a photocopy of this page with your order, filling in the requested quantities in the spaces provided ______ and ticking off the boxes _____ to indicate your choices.

Sepam 100 S01 LD (supplied with connections and mounting lugs)

Quantity		
Rated frequency	50 Hz	
	60 Hz	
Version	Single-phase	
	Three-phase	
Auxiliary power supply	24 to 30 Vdc	
	48 to 125 Vdc	
	220 to 250 Vdc	
	100 to 127 Vac	
	220 to 240 Vac	
Stabilization plat	e	
Resistance	68 Ω - 280 W	
	150 Ω - 280 W	
	270 Ω - 280 W	
	470 Ω - 180 W	
	680 Ω - 180 W	
Surge limiters		
Single unit		
Triple unit		